Elliptic Column Consolidated by Acetylide Dianion, Cyanide, and Trifluoroacetate in a Novel Quadruple Salt of $\operatorname{Silver(I)}$

Quan-Ming Wang and Thomas C. W. Mak*

Department of Chemistry
The Chinese University of Hong Kong Shatin, New Territories, Hong Kong SAR, P. R. China

Received August 3, 2000
In keeping with recent interest in the $\mathrm{d}^{10}-\mathrm{d}^{10}$ closed-shell attraction, ${ }^{1}$ spectroscopic and structural evidence for the less explored $\mathrm{Ag}(\mathrm{I})-\mathrm{Ag}(\mathrm{I})$ interaction, termed argentophilicity, has been gathering at a rapid pace. ${ }^{2}$ By taking advantage of argentophilic interaction that promotes the aggregation of silver(I) centers into various polyhedra, we have obtained a variety of double salts of the general formula $m \mathrm{AgY} \cdot n \mathrm{AgZ} \cdot x \mathrm{~L}(\mathrm{Y}, \mathrm{Z}=$ different anions; $\mathrm{L}=$ solvate molecule that may be present $)^{3-5}$ and furthermore succeeded in synthesizing some rare examples of silver (I) triple salts of the type $1 \mathrm{AgX} \cdot m \mathrm{AgY} \cdot n \mathrm{AgZ} \cdot x \mathrm{~L} .{ }^{6}$ Noting that the previously achieved triple salts involved the separate use of $\mathrm{AgCN}{ }^{6 \mathrm{a}}$ and $\mathrm{Ag}_{2} \mathrm{C}_{2},{ }^{6 \mathrm{~b}}$ we attempted to incorporate both components into a crystalline lattice together with two other kinds of silver salts, thereby generating an unprecedented quadruple salt. Following such a strategy, the first silver(I) salt containing four different kinds of anions, namely $2 \mathrm{Ag}_{2} \mathrm{C}_{2} \cdot 3 \mathrm{AgCN} \cdot 15 \mathrm{CF}_{3}$ $\mathrm{CO}_{2} \mathrm{Ag} \cdot 2 \mathrm{AgBF}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O} 1$, has been isolated. ${ }^{7}$

Single-crystal X-ray analysis revealed that 1 consists of an interesting nanoscale columnar structure, which is built up from three kinds of fundamental units: \mathbf{A}, \mathbf{B}, and \mathbf{C}. Unit \mathbf{A} (Figure 1) is a double cage made of thirteen silver atoms and two encapsulated acetylenediide $\left(\mathrm{C}_{2}{ }^{2-}\right)$ species, which can be viewed as two $\mathrm{C}_{2} @ \mathrm{Ag}_{8}$ polyhedra sharing a triangular face. These two single cages are related by a 2 -fold axis passing through $\mathrm{Ag}(1)$ and the midpoint of the line joining $\operatorname{Ag}(2)$ and $\operatorname{Ag}(2 a)$. Each polyhedron is best described as a trigonal prism $[\mathrm{Ag}(1) \mathrm{Ag}(2)$ $\mathrm{Ag}(2 \mathrm{a}) \mathrm{Ag}(4) \mathrm{Ag}(3) \mathrm{Ag}(5)]$ with two of its rectangular faces capped by $\operatorname{Ag}(6)$ and $\operatorname{Ag}(7)$. The mean deviation of the atoms constituting the three rectangular faces of the trigonal prism lies in the range $0.067-0.090 \AA$. The edges of the $\left[\mathrm{C}_{2} @ \mathrm{Ag}_{8}\right.$] bicapped trigonal

[^0]

Figure 1. Unit A consisting of a double cage fused from two bicapped silver trigonal prisms. Polyhedral edges that are longer than $3.40 \AA$ (twice the van der Waals radius of silver atom) are represented by broken lines. Selected bond ditances $[\AA$]: $\mathrm{C}(1)-\mathrm{C}(2) 1.16(1), \mathrm{C}(1)-\operatorname{Ag}(1) 2.58(1)$, $\mathrm{C}(1)-\mathrm{Ag}(2) 2.48(1), \mathrm{C}(1)-\mathrm{Ag}(3) 2.29(1), \mathrm{C}(1)-\mathrm{Ag}(4) 2.30(1), \mathrm{C}(1)-$ $\mathrm{Ag}(7) 2.145(9), \mathrm{C}(2)-\mathrm{Ag}(1), 2.746, \mathrm{C}(2)-\mathrm{Ag}(2 \mathrm{a}) 2.38(1), \mathrm{C}(2)-\mathrm{Ag}(4)$ $2.59(1), \mathrm{C}(2)-\operatorname{Ag}(5) 2.18(1), \mathrm{C}(2)-\mathrm{Ag}(6) 2.19(1)$. Symmetry code: (a) $1-x, y, 3 / 2-z$.

Figure 2. Structural fragments (a) $\left[\mathrm{Ag}_{4} \mathrm{CN}\right]$ (Unit B) and (b) $\left[\mathrm{Ag}_{6}(\mathrm{CN})_{2}\right]$ (Unit C). Symmetry codes: (b) $1-x, y, 1 / 2-z$; (c) $1-x, 1-y, 1-$ z.
prism lie in the range of $2.879(1)-3.316(1) \AA$ (within twice the van der Waals radius of silver atom), except two considerably longer ones at $\operatorname{Ag}(3) \cdots \operatorname{Ag}(4)=3.869 \AA$ and $\operatorname{Ag}(4) \cdots \operatorname{Ag}(5)=$ 4.199 Å.
$\mathrm{AC}_{2}{ }^{2-}$ species is accommodated in each Ag_{8} cage with its molecular axis aligned approximately toward the capping silver atoms $\operatorname{Ag}(7)$ and $\operatorname{Ag}(6)\left[\mathrm{C}(1)-\mathrm{C}(2)-\operatorname{Ag}(6)=140(1)^{\circ}, \mathrm{C}(2)-\right.$ $\left.\mathrm{C}(1)-\operatorname{Ag}(7)=176(1)^{\circ}\right]$. The $\mathrm{C}(1)-\mathrm{C}(2)$ bond length $1.16(1) \AA$ is significantly shorter than the $\mathrm{C}-\mathrm{C}$ triple bond lengths in acetylene $(1.205 \AA),{ }^{8} \mathrm{CaC}_{2}(1.191 \AA),{ }^{9}$ and the ternary alkali metal silver acetylides CsAgC_{2} and $\mathrm{KAgC}_{2},(1.217(7)$ and $1.223(6) \AA$, respectively). ${ }^{10}$ As the $\mathrm{C}-\mathrm{C}$ bond distances found in the double and triple salts of silver acetylide fall in the range 1.175(7)$1.225(7) \AA$, the bond length observed in $\mathbf{1}$ lies close to the lower limit, suggesting that the degree of metal-to-ligand back-bonding ${ }^{11}$ is very low in such a silver-rich environment. The observed $\mathrm{Ag}-\mathrm{C}$ distances range from $2.145(9)$ to $2.59(1) \AA$; however, $\mathrm{Ag}(1) \cdots$ $C(2)$ at $2.746 \AA$ is too long to be taken as a coordination bond.

The silver polyhedra encapsulating $\mathrm{C}_{2}{ }^{2-}$ that have been found thus far are all single cages that are either connected by bridging ligands or directly linked through vertex-sharing into 2D or 3D

[^1]

Figure 3. An elliptic column viewed approximately in the [101] direction. $\mathrm{Ag}(\mathrm{I})$ atoms are drawn as 35% thermal ellipsoids, and the remaining atoms are differentiated by size and shading. All F atoms have been omitted for clarity. Type \mathbf{A}, \mathbf{B}, and \mathbf{C} units are each outlined by a dotted oval or frame.
networks. Unit \mathbf{A} represents the first example of a face-sharing double cage with one $\mathrm{C}_{2}{ }^{2-}$ anion located inside each half.

Motif \mathbf{B} is a cyanide-bridged tetra-silver fragment located at a site of symmetry 2 (Figure 2a). The disordered cyanide group of this $\left[\mathrm{Ag}_{4} \mathrm{CN}\right]$ fragment is represented by $\mathrm{N}(2)=1 / 2 \mathrm{C}+\frac{1}{2} \mathrm{~N}$. Motif \mathbf{C} (Figure 2b) is a centrosymmetric hexa-silver moiety $\left[\mathrm{Ag}_{6}(\mathrm{CN})_{2}\right]$ with three pairs of silver atoms side-on bridged by two ordered cyanides, each being coordinated to four silver atoms. The cyanide ligands in motifs \mathbf{B} and \mathbf{C} both adopt the $\mu_{4}-\kappa C, \kappa C$: $\kappa N, \kappa N$ coordination mode that occurs in several precedents: $3 \mathrm{AgCN} \cdot 2 \mathrm{AgF} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{4}$ and $\mathrm{AgCN} \cdot \mathrm{AgF} \cdot 4 \mathrm{AgCF}_{3} \mathrm{CO}_{2} \cdot 2 \mathrm{~L}\left(\mathrm{~L}=\mathrm{H}_{2} \mathrm{O}\right.$ or $\left.\mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{\text {a }}$ The $\mathrm{Ag} \cdots \mathrm{Ag}$ distances are $\mathrm{Ag}(8) \cdots \mathrm{Ag}(9)$ 2.943(2), $\mathrm{Ag}(10) \cdots \mathrm{Ag}(10 \mathrm{c}) 2.942(2)$, and $\mathrm{Ag}(11) \cdots \mathrm{Ag}(12) 2.839(2) \AA$, which are comparable to the interatomic contact of $2.89 \AA$ in metallic silver. ${ }^{12}$

Structural units \mathbf{A}, \mathbf{B}, and \mathbf{C} are inter-linked through 7.5 independent bridging trifluoroacetato groups to generate the fascinating columnar structure shown in Figure 3. Viewed approximately along the [101] direction, one \mathbf{B} and two \mathbf{C} fragments are bridged by nine trifluoroacetato ligands to form a
(12) Emsley, J. The Elements; Clarendon Press: Oxford, 1989; p 174.

Figure 4. Oval cross section of an elliptic column viewed along the c direction. Dimensions of the major and minor diameters are shown. All F atoms have been omitted for clarity.
pear-like cavity with their hydrophobic $-\mathrm{CF}_{3}$ tails accommodated in it. Furthermore, motif \mathbf{A} is connected to neighboring silver atoms via fifteen trifluoroacetato bridges to construct an intriguing pentacle. A noteworthy feature is that the trifluoroacetato ligands adopt two kinds of bridging patterns: $\mu_{3}-O, O: O^{\prime}$ and $\mu_{4}-O, O$: O^{\prime}, O^{\prime} coordination modes with $\mathrm{Ag}-\mathrm{O}$ distances in the range of $2.263(9)-2.587(8) \AA$. Only one example containing the $\mu_{4}-O, O$: O^{\prime}, O^{\prime} coordination mode of $\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}$has been reported, ${ }^{6 a}$ and the coexistence of μ_{3} and μ_{4} binding modes of trifluoroacetato groups in the same structure is unprecedented.

Alternately arranged pentacles and pear-like cavities are fused in a zigzag fashion along the c direction to configure an elliptic column, whose oval cross section is shown in Figure 4. The major and minor diameters of the elliptic girdle of the column are 15.5 and $9.0 \AA$, respectively. Such cationic columns are aligned parallel to each other along the c direction in the crystal structure of $\mathbf{1}$. They are further interconnected to form a 3D network through bridging aqua ligands, which together with the noncoordinating $\mathrm{BF}_{4}{ }^{-}$anions occupy the space between them (see Supporting Information Figure 1S).

In summary, successful synthesis of the unprecedented quadruple salt $\mathbf{1}$ is achieved through a judicious combination of argentophilicity and the known coordination modes of selected anionic ligands in a silver(I)-rich environment: (i) the invariable preference of $\mathrm{C}_{2}{ }^{2-}$ for encapsulation within a silver cluster, (ii) the tendency of CN^{-}to achieve its highest ligation number through the $\mu_{4}-\kappa C, \kappa C: \kappa N, \kappa N$ mode, (iii) the bridging capacity of $\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}$whose hydrophobic tail also plays a significant role, and (iv) the weakly coordinating behavior of BF_{4}^{-}. Further exploration of viable synthetic routes to novel silver multiple salts and the controlling factors relevant to the self-assembly process are in progress.

Acknowledgment. This paper is dedicated to the memory of Dr. Hson-Mou Chang (1923-2000). We thank the Hong Kong Research Grants Council Earmarked Grant (CUHK 4022/98P) for financial support.

Supporting Information Available: One figure (PDF) and one X-ray crystallographic file in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0028727

[^0]: (1) (a) Pyykkö, P. Chem. Rev. 1997, 97, 597. (b) Che, C.-M.; Mao, Z.; Miskowski, V. M.; Tse, M. C.; Chan, C.-K.; Cheung, K.-K.; Phillip, D. L.; Leung, K.-H. Angew. Chem., Int. Ed. 2000, 39, 4084.
 (2) (a) Rawashdeh-Omary, M. A.; Omary, M. A.; Patterson, H. H. J. Am. Chem. Soc. 2000, 122, 10371. (b) Che, C.-M.; Tse, M.-C.; Chan, M. C. W.; Cheung, K. K.; Phillips, D. L.; Leung K.-H. J. Am. Chem. Soc. 2000, 122, 2464.
 (3) (a) Guo, G.-C.; Mak, T. C. W. Chem. Commun. 1999, 813. (b) Guo, G.-C.; Mak, T. C. W. Angew. Chem., Int. Ed. 1998, 37, 3268.
 (4) Guo, G.-C.; Mak, T. C. W. Angew. Chem., Int. Ed. 1998, 37, 3183.
 (5) (a) Guo, G.-C.; Wang, Q.-G.; Zhou, G.-D.; Mak, T. C. W. Chem. Commun. 1998, 339 . (b) Guo, G.-C.; Zhou, G.-D.; Mak, T. C. W. J. Am. Chem. Soc. 1999, 121, 3136. (c) Guo, G.-C.; Zhou, G.-D.; Wang, Q.-G.; Mak, T. C. W. Angew. Chem., Int. Ed. 1998, 37, 630.
 (6) (a) Wang, Q.-M.; Mak, T. C. W. Chem. Commun. 2000, 1435. (b) Wang, Q.-M.; Mak, T. C. W. J. Am. Chem. Soc. 2000, 122, 7608.
 (7) $\mathrm{Ag}_{2} \mathrm{C}_{2}$ was prepared as described previously. ${ }^{5}$ CAUTION: thoroughly dried $\mathrm{Ag}_{2} \mathrm{C}_{2}$ detonates easily upon mechanical shock and heating, and only a small quantity should be used in any chemical reaction. Excess $\mathrm{Ag}_{2} \mathrm{C}_{2}$ and AgCN were added to 1 mL of a concentrated aqueous solution of $\mathrm{AgCF}_{3} \mathrm{CO}_{2}$ and AgBF_{4} (molar ratio $\sim 1: 3$) in a plastic beaker with stirring until saturated. The undissolved amount of $\mathrm{Ag}_{2} \mathrm{C}_{2}$ and AgCN were filtered off, and the filtrate was placed in a desiccator charged with $\mathrm{P}_{2} \mathrm{O}_{5}$. Colorless prismatic crystals of 1 (mp $120-125^{\circ} \mathrm{C} \mathrm{dec}$) were obtained in $\sim 50 \%$ yield after several days. The compound is very hygroscopic and decomposes readily in common solvents such as water, ethanol, and acetonitrile. Crystal data for 1: $\mathrm{C}_{37} \mathrm{H}_{18^{-}}$ $\mathrm{Ag}_{24} \mathrm{~B}_{2} \mathrm{~F}_{53} \mathrm{~N}_{3} \mathrm{O}_{39}, M=4746.04$, monoclinic, space group $C 2 / c$ (No. 15), $a=$ 26.372(3) $\AA, b=25.257(3) \AA, c=15.978(2) \AA, \beta=103.804(2)^{\circ}, V=$ $10335(2) \AA^{3}, Z=4, D_{\mathrm{c}}=3.050 \mathrm{Mg} \mathrm{m}^{-3}, T=293 \mathrm{~K}$. Full-matrix leastsquares refinement on F^{2} (12 465 unique data, 712 variables) converged to $R 1=0.0657, w R 2=0.1996$ for 6230 observed reflections $[I>2 \sigma(I)]$.

[^1]: (8) Herzberg, G.; Spinks, J. W. T. Z. Physik 1934, 91, 386.
 (9) Atoji, M. J. Chem. Phys. 1961, 35, 1950.
 (10) Kockelmann, W.; Ruschewitz, U. Angew. Chem., Int. Ed. 1999, 38, 3492.
 (11) Halet, J.-F.; Mingos, D. M. P. Organometallics 1988, 7, 51.

